Latent Variable Indirect Response Modeling of Continuous and Categorical Clinical Endpoints

Chuanpu Hu, PhD

Scientific Director

Model Based Drug Development

Johnson & Johnson

PAGE 2013

pharmaceutical companies of Johnson-Johnson

Overview

- Indirect response (IDR) modeling as an effective paradigm for exposure-response modeling of clinical trial endpoints to guide clinical drug development
 - Ordered categorical endpoint modeling
 - Latent variable representation
 - IDR modeling of endpoints in placebo-controlled clinical trials
 - Model representation: link with change-from-baseline IDR model representation
 - An equivalence between Type I and Type III IDR models: interpretation
- Modeling extra correlation between continuous and ordered categorical endpoints
- Application to ustekinumab data

Ordered Categorical Endpoint Modeling: Latent Variable Representation

- Example: 20%, 50%, and 70% improvement in the American College of Rheumatology disease severity criteria (ACR20/50/70)
 - Combine into one variable ACR: ACR20/50/70 achieved \Leftrightarrow ACR \leq k, k= 1, 2, or 3
- Latent variable representing underlying disease condition (similar to Hutmacher et al 2008):
 - $Dis(t) = B_0 F_p(t) F_d(t) exp(\sigma \varepsilon_t)$
 - B_0 , baseline; $0 < F_p(t) \le 1$, placebo effect; $0 < F_d(t) \le 1$, drug effect
- Define RfB(t) = % reduction from baseline, and calculate:
 - $RfB(t) = [Dis(0) Dis(t)]/Dis(0) = 1 F_p(t) F_d(t) exp(-\sigma \epsilon_{i0}) exp(\sigma \epsilon_{it})$
 - $log[1 RfB(t)] = log[F_p(t)] + log[F_d(t)] \sigma \epsilon_{i0} + \sigma \epsilon_{it}$

 \Leftrightarrow

- Define: $z(t) = log[1 - RfB(t)], R(t) = log[F_p(t)] + log[F_d(t)] - \sigma \epsilon_{i0}, \epsilon = \epsilon_{it}$

 $- z(t) = R(t) + \sigma \varepsilon$

- Assumption: ACR20/50/70 met, if % reduction from baseline RfB(t) crosses certain thresholds
- Equivalently when z(t) = log[1 RfB(t)] crosses certain thresholds

Probit Regression

- Let β_k , k = 1,2, or 3, be the thresholds, i.e. ACR $\leq k \Leftrightarrow z(t) < \beta_k$
- Using the probit link, i.e., assuming $\varepsilon \sim N(0,1)$:
 - prob(ACR \leq k) = prob(z(t) < β_k) = prob[ϵ < (β_k R(t))/ σ] = $\Phi[(\beta_k R(t))/\sigma]$
- Write

$$-\gamma_{k} = \beta_{k}/\sigma, g(t) = -\log[F_{p}(t)]/\sigma, f_{d}(t) = -\log[F_{d}(t)]/\sigma, \eta = -\varepsilon_{i0}$$

- Then
 - $\Phi^{-1} [prob(ACR \le k)] = \gamma_k + g(t) + f_d(t) + \eta$
 - which is the standard form of probit regression
 - Constraint: $0 \le g(t) < 1$, but can be reparameterized such that $-\infty \le g(t) < 0$
- Using the logistic distribution for ϵ leads to a similar logistic regression form, i.e., with Φ replaced by the logit function

Choosing Model Terms

- Probit regression:
 - Φ^{-1} [prob(ACR \leq k)] = γ_k + g(t) + f_d(t) + η
- Placebo model: Should have prob(ACR \leq k)] at t=0, thus g(0)=- ∞
 - Choose $g(t) = \log[1 \exp(-rt)]$
 - $g(t) = 0 \Rightarrow \gamma_k$ represent steady-state probabilities
- Desired to use IDR model for $f_d(t)$; to interpret as drug effect, needs $f_d(t)=0$
 - $f_d(t) = DE[1 R(t)]$

$$\frac{\mathrm{d}\,\mathbf{R}(t)}{\mathrm{d}t} = k_{\mathrm{in}} \left(1 - \frac{\mathbf{C}_{\mathrm{p}}}{IC_{50} + \mathbf{C}_{\mathrm{p}}}\right) - k_{\mathrm{out}} \,\mathbf{R}(t)$$

- R(0) = 1
- $f_d(t)$ turns out to be equivalent to a reduction-from-baseline IDR model
 - Proof: plug $f_d(t)$ into the differential equation

harmaceutical companie f Johnson-Johnson

Link Model Symmetry

- Probit regression model takes form of
 - $\Phi^{-1}[\operatorname{prob}(\operatorname{ACR} \le k)] = f_{k,p}(t) + f_d(t)$
 - $f_d(t)$ represents increase in beneficial effect
- Equally reasonable to model
 - $\Phi^{-1}[\text{prob}(\text{ACR} > k)] = g_{k,p}(t) + g_d(t)$
 - g_d(t) represents reduction in harm
- Algebraically, for general symmetric link functions:
 - $g_{k,p}(t) = -f_{k,p}(t), g_d(t) = -f_d(t)$
- If $f_d(t)$ takes form of reduction-from-baseline IDR model, then $g_d(t)$ takes form of corresponding increase-from-baseline IDR model
 - Proof: plug $g_d(t)$ into the differential equation

General IDR Model Symmetry

• As (perhaps) expectedly:

Type I/III reduction-from-baseline IDR model ⇔

Type III/I increase-from-baseline IDR model

- Proof: differential equation algebra
- (Perhaps) unexpectedly:
 - No such symmetry holds for Type II/IV IDR models
- Holds regardless of categorical or continuous endpoint modeling

Applying IDR Model to Clinical Endpoints

- Clinical endpoint modeling
 - Disease scores lack physiological interpretation
 - Improvement can be caused by increasing benefit or reducing harm
 - May need to try all IDR models (Hutmacher et al 2008)
- Only 3 identifiable IDR models to try instead of 4
- Compared with simple correlation methods (e.g., using AUC), IDR models, using only 1 more parameter (k_{out}), allows the efficient use of all exposure and efficacy observations

Model Extra Correlation between Two Endpoints

- Bivariate normal Residual errors of (latent) endpoints X, Z:
 - $(\epsilon_X, \epsilon_Z) \sim N(\mu_X, \sigma_X^2, \mu_Z, \sigma_Z^2, \rho)$
 - Conditional distribution:
 - $Z|X=x \sim N(\mu_Z + \sigma_Z / \sigma_X \rho(x \mu_X), (1 \rho^2) \sigma_Z^2)$
 - May choose $\sigma_Z = 1$
- Implementation sketch in NONMEM:
 - SIG = THETA(.)
 - ρ = THETA(.)
 - IF(continuous observation) THEN
 - RES = (DVctu PREDctu)/SIG
 - LKPASI = EXP(-RES**2/2) / (sqrt(2*3.14)*SIG)
 - ELSE IF(categorical observation) THEN
 - PREDcond = PREDdis+ ρ *RES
 - INT1 = (ALPHA1 PREDcond) / sqrt(1 ρ^2)
 - INT2 = (ALPHA2 PREDcond) / sqrt(1 ρ^2)
 - ...
 - IF(DV.EQ. k) THEN LKACR =
 - ENDIF
 - Y = LKPASI * LKACR

PHARMACEUTICAL COMPANIES of Johnson Johnson

Application: Study Design and Data

Study PSUMMIT I (used for initial model development)

- TNF naïve subjects with active psoriatic arthritis
- Week 0 12: PBO / 45mg / 90mg / Loading + Q12 weeks
- Week 12 24: PBO crossover
- ~600 subjects, 2,000 PK records, 3,500 ACR scores, 2,300 PASI scores

Study PSUMMIT II (reserved for model validation)

- Similarly designed, except that ~50% subjects were TNF experienced
- ~300 subjects, half data records

Clinical endpoints

- ACR20/50/70: collected at Weeks 4, 8, 12, 16, 20 and 24
- PASI scores: treated as continuous, collected at Weeks 0, 12, 16 and 24

pharmaceutical companies of **Johnson Johnson**

Overall PK/PD Model Diagram for both Endpoints (Type I IDR Model)

Model Development

- PK modeling: Confirmatory (Hu & Zhou 2008, Hu et al 2011)
- ACR model component development:
 - Reasonable, NONMEM standard errors for drug effect model parameters relatively large (30-100%)
- PASI model component development:
 - placebo effect was insignificant model reduced to regular Type I IDR model without placebo effect
 - Between-subject random effect on baseline
 - Reasonable, NONMEM standard errors for IC50 near 50%
- Extra correlation term estimated as 0.173, was significant with NONMEM objective function drop = 13

harmaceutical companies of Johnson Johnson

External Model Validation Visual Predictive Check (VPC) - ACR

External Model Validation VPC: PASI

Chuanpu Hu, PhD

Conclusions

IDR models provide a predictive, parsimonious approach for efficient exposure-response modeling of clinical endpoints

- Change-from-baseline representation has nice characteristics
 - Allows separate placebo modeling
- Practically, there are in essence only 3 IDR models instead of 4

Modeling extra-correlation between two endpoints can be implemented in NONMEM

PHARMACEUTICAL COMPANIES

References

- Hutmacher MM, Krishnaswami S, Kowalski KG (2008). Exposureresponse modeling using latent variables for the efficacy of a JAK3 inhibitor administered to rheumatoid arthritis patients. J Pharmacokinet Pharmacodyn 35:139-157.
- C. Hu, Z. Xu, A. Mendelsohn and H. Zhou (2013), Latent variable indirect response modeling of categorical endpoints representing change from baseline, J Pharmacokinet Pharmacodyn, 40(1):81-91.
- Woo S, Pawaskar D, Jusko WJ (2009). Methods of utilizing baseline values for indirect response models. J Pharmacokinet Pharmacodyn 36:381-405.
- C. Hu and H. Zhou (2008), An improved approach for confirmatory phase III population pharmacokinetic analysis, *J Clinical Pharmacology*, 48(7): 812-822.
- C. Hu, J. Zhang and H. Zhou (2011), Confirmatory analysis for phase III population pharmacokinetics, *Pharmaceutical Statistics*, 10: 14-26.

